

 Operation Manual: Fingerprint Biometric Comparison

1. Uploading Images

In the form, upload two fingerprint images:

• Requester: the fingerprint image of the person to be verified.

• Candidate: the fingerprint image to compare against.

The images must be in .bmp format and should contain complete or partial

fingerprint scans, such as those provided in the sample link below.

2. Sample Images for Testing

To run real tests using valid data, download sample images from the following

link:

 Download Sample Images

The dataset is organized as follows:

• Each individual has 10 fingers, and each finger includes two images:

o A clean (undistorted) version.

o A distorted version (with rotation, pressure, blur, or cropping).

http://164.152.33.142/demo_images

These variations are designed to test the accuracy of the comparison algorithm,

determining whether it can still match fingerprints from the same person

despite differences in capture conditions.

3. Performing the Comparison

After uploading both images:

1. Click the "Match Now" button.

2. The system will process the fingerprints, identify relevant matching

regions, and return:

o Match (if both belong to the same person),

o No Match (if they belong to different people),

o **Caution message** if the score falls into an uncertain range.

o Optionally, a visual explanation highlighting the areas that

influenced the decision (e.g., using Grad-CAM or overlay

visualization).

4. Visual feedback options:

 Grad-CAM heatmaps (highlight key activation regions),

 Minutiae maps (automatically detected keypoints plotted on

each fingerprint).

 Technical Detail

 Fingerprint Matcher Using Siamese Neural Network + Grad-CAM

Over the past few days, I’ve developed an educational project focused on

fingerprint comparison using deep learning techniques. The solution is built on

a Siamese Neural Network architecture, using MobileNetV2 as a lightweight

feature extractor — and incorporates a Grad-CAM visualization module to

highlight the most relevant fingerprint regions used during biometric

verification.

 Technical Overview

This project offers an alternative approach to traditional biometric verification

systems. While classical methods rely on heuristic algorithms for minutiae

extraction (e.g., ridge bifurcations and endings), this solution leverages a neural

network that automatically learns vector representations (embeddings)

directly from image pixels.

These embeddings are then compared using Euclidean distance, providing a

similarity measure that is robust to noise, rotation, distortion, and low-quality

captures — all common challenges in real-world biometric environments.

 Training Dataset — SOCOFing

The SOCOFing dataset was used for training, comprising over 6,000 BMP-format

fingerprint images with artificially applied variations (cuts, noise, rotation, dirt).

This allowed for realistic simulation of forensic and administrative scenarios.

 Training Architecture

• Image size: 96×96 px (RGB)

https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://www.kaggle.com/datasets/ruizgara/socofing

• Batch size: 32

• Epochs: 5

• Loss function: Binary Crossentropy

• Optimizer: Adam

• Output model: model/siamese_model.h5

Custom lightweight CNN with:

• 2 Conv2D layers

• 2 MaxPooling2D layers

• 1 Flatten + Dense (128-dim embeddings)

• Lambda layer for Euclidean distance

 Web Inference + Grad-CAM

The app.py application was developed using Flask, with a simple and interactive

web interface for uploading .bmp images. The system:

• Processes input image pairs

• Generates embeddings

• Returns a similarity score + MATCH / NO MATCH

• Optionally displays a Grad-CAM heatmap over the image, highlighting the

neural activation regions most responsible for the decision.

The heatmap can be enabled via a checkbox and enhances interpretability of the

matching process.

 Execution Environment (Oracle Cloud)

• Ubuntu 20.04 (Canonical)

• Instance: VM.Standard.E2.1 (1 vCPU, 8 GB RAM)

• TensorFlow CPU-only (no GPU)

• NGINX + Gunicorn + systemd

 Tech Stack

• TensorFlow 2.x + Keras

• Flask, OpenCV, Matplotlib, Pillow

• Custom Grad-CAM implementation

• Automated deployment via setup.sh + NGINX reverse proxy

 Repository + Live Demo

 Live demo: https://projetos.tiago.cafe/

 GitHub repository: https://github.com/algodas/BiomatchML.git

Includes:

• Full codebase (app.py, train.py, cam_utils.py)

• Demo fingerprint images

• Auto-install script (setup.sh)

• Grad-CAM integration and web-based reprocessing

 If you work with biometrics, computer vision, or are interested in applying

Siamese Networks in contexts like signature verification, face recognition,

document comparison or voice matching — let’s connect!

#DeepLearning #Biometrics #SiameseNetwork #ComputerVision #GradCAM

#Flask #TensorFlow #Keras #MobileNetV2 #AI #MachineLearning #GitHub

#OpenSource #EducationalProject #NeuralNetworks #FingerprintRecognition

https://projetos.tiago.cafe/
https://github.com/algodas/BiomatchML.git

